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Near infrared chemical imaging (NIR-CI) combines conventional near infrared (NIR) spectros-
copy with chemical imaging, thus provides spectral and spatial information simultaneously.
It could be utilized to visualize the spatial distribution of the ingredients in a sample. The data
acquired using NIR-CI instrument are hyperspectral data cube (hypercube) containing thousands
of spectra. Chemometric methodologies are necessary to transform spectral information into
chemical information. Partial least squares (PLS) method was performed to extract chemical
information of chlorpheniramine maleate in pharmaceutical formulations. A series of samples
which consisted of di®erent CPM concentrations (w/w) were compressed and hypercube data
were measured. The spectra extracted from the hypercube were used to establish the PLS
model of CPM. The results of the model were R2

val 0.981, RMSEC 0.384%, RMSECV 0.483%,
RMSEP 0.631%, indicating that this model was reliable.
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1. Introduction

Near infrared chemical imaging (NIR-CI) is an
emerging technique which combines conventional
near infrared (NIR) spectroscopy with chemical
imaging to provide spectral and spatial informa-
tion simultaneously.1 Traditional single point NIR
spectroscopy obtains a bulk average spectrum to
re°ect an average composition of the sample. NIR-
CI adds a spatial dimension to NIR spectroscopy,
which gifts NIR-CI ability to acquire distributional
information of ingredients in the sample.

In NIR-CI, the spectrum of the sample is recor-
ded and ¯nally all spectra comprise a hyperspectral
data cube.2 Once the spectral signature of each pixel
was transferred into chemical information (i.e., the
concentration), the chemical images will be gener-
ated, which re°ect the distribution of components
in the sample. NIR-CI also owns the superiorities
of being rapid, nondestructive and without
sample pretreatment. Therefore, NIR-CI has the
potential to acquire increasing process and pro-
duct understanding, which is consistent with the
process analytical technology (PAT)3 initiative en-
couraged by Food and Drug Administration (FDA)
in pharmaceutical ¯eld.

The ability of simultaneously obtaining spectral
and spatial information of components has made
NIR-CI a promising PAT tool for the control of
pharmaceutical manufacturing process and quality
assessment of ¯nal products. The applications of
NIR-CI include the assessment of homogeneity of
mixture during the blending process,4–7 the visual-
ization of spatial distribution of components in in-
termediate and ¯nal product,8,9 the discrimination
of counterfeit pharmaceutical products,10–12 etc.
More pharmaceutical applications of NIR-CI tech-
nique can refer to previous reviews.13,14 Among the
applications, NIR-CI is especially suitable to assess
distribution homogeneity of component in the
sample, as spatial information could be acquired by
NIR-CI.

However, the data measured by NIR-CI are
three-dimensional hypercube. All the ingredients
spectral signatures are overlapping and chemo-
metric methods are required to obtain relevant
qualitative or quantitative information. The hy-
percube could be analyzed by either three-way
method or the two-way method. It was proved that
the two-way methods were more suitable for this
type of data.15 The hypercube has to be unfolded to

two-dimensional matrix and then conventional two-
way methodologies could be used. The most com-
monly used methods include the univariate methods
(i.e., the characteristic wavenumber method) and
multivariate methods, such as partial least squares
(PLS), classical least squares and so on. Finally, the
two-dimensional matrix is refolded to retain the
spatial distribution of each pixel and reconstruct
the chemical images.

Chlorpheniramine maleate (CPM) is a H1 recep-
tor antagonist and has a strong action of anti-his-
tamine.16 It has been clinically used to alleviate
symptoms of cold and treat the allergic disease.
According to the Chinese pharmacopoeia (2010
Edition, Volume II), legitimate labeled content of
CPM in CPM tablets is 1mg or 4mg. The CPM
content is about 1–5% (w/w) in a tablet. Active
pharmaceutical ingredient (API) distribution plays
an important role in both medicine safety and e±-
cacy, especially for small dose products or sustained
and controlled release products. Therefore, it is
necessary to assess the distributional homogeneity of
CPM in the tablet. In this study, the CPM tablets
made by ourselves were taken as examples. NIR-CI
was used to acquire the concentration information of
CPM coupled with PLS method. Then, the concen-
tration value reconstruction images were generated
for further distributional homogeneity assessment.

2. Materials and Methods

2.1. Materials

A four-ingredient pharmaceutical tablet formula-
tion was used to produce the NIR-CI data set. The
API of tablet was CPM and provided by Haohua
Industry Corporation (Jinan, P. R. China). The
main excipients of the tablet were pregelatinized
starch (STA) and microcrystalline cellulose (MCC),
which were purchased from Colorcon (USA) and
Beijing FengliJingqiu Commerce and Trade Cor-
poration (P. R. China), respectively. Magnesium
stearate (MgS) was purchased from Sinopharm
Chemical Reagent Corporation (P. R. China) and
served as lubricant.

2.2. Sample preparation

The calibration data set comprised of 33 batches
was designed by a D-optimal formulation design
using Design Expert 7.0 software (USA). The

M. Xu et al.

1650002-2

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

01
6.

09
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

03
.2

40
.1

26
.9

 o
n 

10
/2

1/
18

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



content range of CPM was from 1% to 10%, and
20% to 90% for pregelatinized starch and from
10% to 80% for MCC. The content of magnesium
stearate was ¯xed because a little amount was
added extra in the formulation (0.4%, w/w).
Table 1 showed the contents of the four ingredients
in each of the 33 calibration batches.

The mixing of dry-blend formulation was per-
formed in a blender using the equal incremental
method and compressed into tablets of 0.5 g by
direct compression on a rotary tablet press
(Xinyuan Pharmaceutical Machinery Corporation,

Shanghai, P. R. China). The parameters of rotary
tablet press were set as compression pressure
60KN, the depth of ¯lling material 5.0mm and the
thickness of the tablet 2.0mm. A °at punch was
utilized to obtain a °at sample surface. Besides,
three batches of prediction set were produced in the
same way to test the performance of the PLS
model. The ingredients contents of prediction set
were also demonstrated in Table 1. The CPM
contents in the prediction set were 4.5%, 5.5% and
6.5%, which were within the content range of the
calibration set in PLS model.

2.3. Hyperspectral data acquisition

One tablet from start, middle and the end of the
tableting process of each batch was selected in order
to assure a representative sampling for calibration
set. Therefore, a total of 99 samples were imaged
(3 tablets from each of the 33 calibration batches).
For the three batches in prediction set, one tablet
of each batch was compressed and imaged.

Each sample was ¯xed onto a microscope slide
and detected directly on the tablet surface. A NIR
lining mapping instrumentation (Spotlight 400N
FT-NIR Imaging Systems, PerkinElmer, UK) was
applied to analyze the samples. A linear mercury
cadmium telluride (MCT) array detector enables
16 spectra being collected in one measurement. An
area (1000�m� 1000�m for calibration set and
2000�m� 2000�m for prediction set) was imaged
using pixel size 25�m� 25�m and spectrum reso-
lution 16 cm�1 thus acquiring a total of 1600 spectra
for calibration set and 6400 for prediction set for
each image. Each spectrum was the average of 16
scans and the wavenumber region was from 7800 to
4000 cm�1.

A high re°ectance standard Spectralon TM
(Labsphere, Inc., North Sutton, New Hampshire)
was used as a background to correct the instrument
response. Hence, relative NIR di®use re°ectance
data (R ¼ Rsample=RbackgroundÞ could be obtained
and transferred into absorbance data ðA ¼
�lgð1=RÞÞ for further analysis.

2.4. Data processing

The NIR-CI data is a hyperspectral data cube
ðM ¼ X � Y � �, X and Y represent spatial
dimensions and � is spectral dimension). Common-
ly, the three-dimensional matrix would be unfolded

Table 1. The content of components of each
batch (w/w).

Number CPM STA MCC MgS

Calibration set
1 0.099 0.239 0.662 0.004
2 0.086 0.812 0.100 0.004
3 0.024 0.525 0.451 0.004
4 0.010 0.302 0.688 0.004
5 0.050 0.228 0.722 0.004
6 0.074 0.464 0.462 0.004
7 0.066 0.578 0.356 0.004
8 0.018 0.882 0.100 0.004
9 0.045 0.652 0.303 0.004
10 0.047 0.701 0.252 0.004
11 0.010 0.477 0.513 0.004
12 0.036 0.366 0.597 0.004
13 0.010 0.765 0.225 0.004
14 0.100 0.400 0.500 0.004
15 0.014 0.200 0.786 0.004
16 0.083 0.517 0.400 0.004
17 0.100 0.302 0.598 0.004
18 0.099 0.716 0.185 0.004
19 0.052 0.785 0.164 0.004
20 0.099 0.606 0.295 0.004
21 0.064 0.700 0.276 0.004
22 0.053 0.495 0.452 0.004
23 0.011 0.389 0.600 0.004
24 0.010 0.475 0.510 0.004
25 0.020 0.470 0.505 0.004
26 0.030 0.465 0.500 0.004
27 0.040 0.460 0.495 0.004
28 0.050 0.455 0.490 0.004
29 0.060 0.450 0.485 0.004
30 0.070 0.445 0.480 0.004
31 0.080 0.440 0.475 0.004
32 0.090 0.435 0.470 0.004
33 0.100 0.430 0.465 0.004

Prediction set
1 0.045 0.51 0.432 0.013
2 0.055 0.50 0.432 0.013
3 0.065 0.49 0.432 0.013

NIR-CI for quantitative analysis of CPM
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into two-dimensional matrix ðXY � �Þ and then
two-way methodologies could be performed.

Though multivariate approaches can analyze
the spectral data using the entire measured wave-
number range, proper variable selection could im-
prove the precision of a multivariate method in
some cases. SiPLS was utilized to select the optimal
wavenumber ranges for PLS models.

Besides, proper preprocessing methods were used
to avoid the impact of nonchemical information
from the image. In this study, some most commonly
used approaches were used, such as Savitzkky–
Golay (SG) derivative transformation, multiplica-
tive scatter correction (MSC) and standard normal
variate (SNV).17

2.5. PLS modeling and image

reconstruction

PLS is a multivariate regression methodology per-
formed to construct quantitative calibration model.
This method is based on the relation between the
spectral signals ðXÞ and the reference values (Y ).18

The spectral data would be corrected to a property
matrix of maintaining the information of interest
while removing interference signal of other spectral
factors.

In this study, PLS model of the active pharma-
ceutical ingredient (CPM) was established. A total
of 99 calibration samples were imaged and the mean
spectrum of each sample was computed. Then, the
three mean spectra of each batch were averaged.
The 33 mean spectra of calibration batch comprised
the matrix X. The theoretical content (%, w/w)
formed the matrix Y for each component. The
sample set was divided by Kennard–Stone (KS)
algorithm into calibration set (22 samples) and
validation set (11 samples). PLS model was con-
structed and optimized according to the number
of latent factors, preprocessing methods and
wavenumber range calculated from the regression
model. Leave-one-out cross validation was utilized
as cross-validation approach.

After the same pretreatments, the hypercube
data of the prediction set was applied to the built
PLS model. Several parameters are used to assess
the predictive capability of PLS model, such as the
determination coe±cient (R2), root mean square
error of calibration (RMSEC), root mean square
error of cross validation (RMSECV) and root mean
square error of prediction (RMSEP).

Then, the spectral information of each pixel
would be converted into predicted concentration
information. The concentration image of CPM was
generated through the reconstruction of predicted
concentration matrix retaining the spatial location
of each pixel. The mean concentration of CPM was
calculated by averaging all predicted pixel
concentrations.

Hyper View software and Spectrum Image soft-
ware (PerkinElmer, UK) were used for data pro-
cessing and analysis. Other data analysis was
performed by home-made routines programmed in
MATLAB software (MATLAB2009b, Mathworks,
USA).

2.6. Assessment of distributional

homogeneity of CPM

After NIR-CI measurement and data analysis, the
spatial distribution images of components could be
obtained. Through observing the distribution ima-
ges by eyes, the homogeneity of ingredient could be
preliminarily assessed. However, this method is not
objective and it is di±cult to quantitatively assess
the homogeneity of di®erent samples.

A criterion called \distributional homogeneity
index (DHI)" has been proposed to assess the
distributional homogeneity of chemical image.
This method was based on continuous-level mov-
ing block (CLMB) methodology and calculating
the ratio of areas under the real and random ho-
mogeneity curve of chemical images. The distri-
bution is more homogeneous, the value of DHI
is closer to 1. Through the calculation of DHI
value, the distribution homogeneity of di®erent
samples could be objectively assessed. More detail
descriptions of the DHI theory could be found in
Ref. 19.

3. Results and Discussion

3.1. PLS modeling

3.1.1. Data preprocessing

The three-dimensional data obtained from NIR-CI
equipment was unfolded into two-dimensional
matrix. The spectra would be a®ected by the over-
lapping peaks, spectral noise or baseline drift,
etc. Preprocessing approaches were performed to
improve the accuracy of the model performance.

M. Xu et al.
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Several types of preprocessing approaches were
utilized in the spectral dataset, such as origin
spectra, SG smoothing with 9-point window, SG
smoothing with 11-point window, 11-point SG and
¯rst derivative (SGþ1D), 11-point SG and second
derivative (SGþ2D), SNV, MSC and normalize.
Leave-one-out cross validation was used to select
the optimal preprocessing method and the number
of latent variable factors was investigated.

The optimum number of latent variable factors
was obtained by calculating the lowest predicted
residual sum of squares (PRESS) value, because
the minimal PRESS value indicates a good bal-
ance between the robustness of the model and R2

value. Finally, a plot of latent factors against
press value was generated by the model, as seen in
Fig. 1. The result of PLS models with di®erent
pretreatment methods were demonstrated in the
Table 2. The spectra preprocessed by 11-point SG
and second derivative methodology had the lowest
latent factors, RMSECV value and coe±cient of

determination (R2) value closest to 1, which was
proved to be the best preprocessing method for PLS
model.

3.1.2. Variable selection by SiPLS model

Moreover, SiPLS was utilized as a variable selection
method. The dataset of full spectrum was separated
into several intervals. Several intervals were used to
build a joint model and the RMSECV value was
regarded as the measure of the accuracy of models.
The combination of intervals with the lowest
RMSECV was chosen. Using this method, the
spectral regions that have poor information about
the property in study are eliminated while that
important bands are retained, thus decreasing the
vulnerability of the calibration models.20 With
variable selection for characteristic spectral regions,
the performance of previous PLS model may be
improved in this way.

In this paper, the SiPLS model was constructed
with combination of subinterval number 3 using 10
equidistant subintervals and 2 factors. The
RMSECV, RMSEP and RMSEC were 0.574%,
0.648%, 0.416%, respectively, which indicated low
performance of SiPLS model. It was because the full
spectrum contained more information needed in this
situation. Therefore, the calibration set of full
spectrum was used as matrix X to build PLS model
directly.

3.1.3. Establishment of PLS model

Based on the above analysis, the spectra pre-
processed by 11-point SG and 2 derivate were used
to build PLS model with 2 latent factors. The
RMSECV, RMSEP and RMSEC were 0.483%,
0.631% and 0.384%, respectively. The R2 were all
higher than 0.9, indicating a good accuracy of PLS

Fig. 1. PRESS plot of CPM with di®erent pretreatment
methods.

Table 2. Di®erent pretreatment methods of PLS model.

Preprocessing methods Latent factors RMSEC (%) R2
cal RMSECV (%) R2

val RMSEP (%) R2
pre

Raw 4 0.527 0.977 0.707 0.962 0.838 0.897
SG9 4 0.481 0.981 0.638 0.969 0.712 0.926
SG11 4 0.480 0.981 0.635 0.969 0.670 0.929

SG11þ1D 2 0.443 0.983 0.615 0.981 0.696 0.929
SG11þ2D 2 0.384 0.988 0.483 0.982 0.631 0.941

MSC 3 0.617 0.968 0.850 0.945 0.738 0.920
SNV 3 0.617 0.968 0.851 0.950 0.739 0.920

Normalize 4 0.571 0.973 0.733 0.959 0.729 0.922

NIR-CI for quantitative analysis of CPM
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model. Figure 2 demonstrated the calibration and
validation regressions for PLS model, the reference
value and prediction value almost distributed in a
straight line closely. The parameters of PLS model
for API indicated that this model was reliable.

3.2. Quanti¯cation and chemical image
reconstruction

One tablet sample for each batch in prediction
set was measured and analyzed with the method
as described in Secs. 2.5 and 3.1, respectively. A
total of 6400 spectra were acquired for each
sample ðð2000� 2000Þ=ð25� 5Þ ¼ 6400, an area of
2000�m� 2000�m, spatial resolution 25�m�
25�mÞ. Each spectrum was applied to the built PLS
model and concentration of each pixel could be
predicted.

Figure 3 showed the concentration images of
the three samples in prediction set. The images
were reconstructed based on the predicted concen-
tration of each pixel according to the origin spatial
location. The color band from blue to red repre-
sented the range of concentration from low to high.
Thus, the spatial distribution of API can be illus-
trated and visualized. The mean concentration of
each component was calculated by averaging all
predicted concentrations of pixels. The mean con-
centration of each sample was 4.09%, 5.95% and
5.85%, respectively.

Fig. 2. CPM NIR predictions versus the reference result.

Fig. 3. Concentration value of reconstruction images of three samples in prediction set (1) Sample 1, (2) Sample 2, (3) Sample 3.

M. Xu et al.
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3.3. Assessment of distributional

homogeneity of CPM

As shown in Fig. 3, CPM distribution of sample 1
was dispersive and homogeneous by eyes. Never-
theless, there were some large red areas could be
observed on the surface of sample 2 and sample 3,
which indicated the existence of aggregation and
agglomeration phenomenon of CPM. Through
visual observation, CPM distribution of sample 1
was considered to be the most homogeneous while
CPM distribution of sample 2 might be the most
inhomogeneous.

However, the assessment of CPM distribution
might be subjective only by naked eyes. Hence, DHI
method was performed to further assess the CPM
distributional homogeneity of di®erent samples.
The size of concentration value reconstruction
images of CPM was 80 pixel� 80 pixel. Therefore,
the image was sampled by the di®erent sizes of
macropixels from 2 pixel� 2 pixel to 80 pixel� 80
pixel.

First, the standard deviation (Std) of each size of
macropixel of real concentration reconstruction
image was computed. Second, the real concentration

reconstruction image was randomized to generate
its corresponding random image. Similarly, the
random image was sampled by di®erent sizes of
macropixels and the Std value of each size of mac-
ropixel was calculated. Then, the homogeneity
curve of real distribution image and random dis-
tribution image was drawn through plotting Std
value against macropixel size (Fig. 4). Ultimately,
the area under the homogeneity curve (real and
random) was calculated and the value of DHI was
obtained.

The DHI value of each sample was 1.394, 4.300
and 2.635, respectively. The tablet becomes more
homogeneous as the DHI value increases. Therefore,
the CPM distributional homogeneity of sample 1
was the most ideal while the distribution of sample
2 was the most inhomogeneous.

4. Conclusions

NIR-CI can acquire spatial distribution information
of components in a sample besides providing spec-
tral information. Through unfolding the hypercube
into two-dimensional matrix, conventional two-way

Fig. 4. Homogeneity curve of CPM distribution of three samples in prediction set. (1) Sample 1, (2) Sample 2, (3) Sample 3;
DHI ¼ AUCreal=AUCrandom.

NIR-CI for quantitative analysis of CPM
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chemometric approaches could be used to extract
interested chemical image. In this study, PLS
method was performed to acquire concentration
information of CPM tablets. A total of 33 mean
spectra and the theoretical CPM contents of each
batch were used as matrix X and Y to establish
the PLS model. The data matrix of prediction set
was applied to the PLS model and the spectral
information was transferred into concentration in-
formation. The CPM concentration value recon-
struction images were generated through refolding
the two-dimensional matrix according to the origin
spatial location of each pixel. A criterion called DHI
was performed to assess the CPM distributional
homogeneity of di®erent samples. The result indi-
cated that the sequence of CPM distributional ho-
mogeneity of 3 samples was: sample 1, sample 3,
sample 2.

NIR-CI has showed great potential in pharma-
ceutical industry as an emerging PAT tool. With
the help of chemometrics, the measured spectral
information could be transformed into chemical in-
formation. Moreover, the spatial information could
be also obtained. The ability of providing distribu-
tional information makes it especially suitable to
assess homogeneity of components in the sample.
More attention should be paid to NIR-CI and more
e®orts should be made to promote its development.
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